

Prismatic UV Screen Hi-Build Gloss series

Tollchem

Chemwatch Hazard Alert Code: 2

Issue Date: 29/10/2016
Print Date: 27/01/2017
L.GHS.AUS.EN

Chemwatch: **69-0450** Version No: **3.1.1.1**

Safety Data Sheet according to WHS and ADG requirements

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Prismatic UV Screen Hi-Build Gloss series
Synonyms	Not Available
Other means of identification	Not Available

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses

Use according to manufacturer's directions.

UV/ EB-curing is a drying technology for coatings, inks and adhesives. It uses light of a certain wavelength or high speed electrons to give almost instantaneous dry films. It allows formulators to develop products for a wide variety of applications and substrates without using volatile organic compounds as solvents. It represents therefore a major technological advance compared to other technologies, which may require abatement installations to take care of these compounds, as many of these compounds are able to cause either environmental or health risks if present in a too large concentration.

UV Cured varnish. Application by Screen printing.

Details of the supplier of the safety data sheet

Registered company name	Tollchem
Address	33 Britton Street Smithfield NSW 2146 Australia
Telephone	+61 2 9729 1929
Fax	+61 2 9729 1930
Website	www.tollchem.com.au
Email	Not Available

Emergency telephone number

Association / Organisation	Chemwatch Emergency Line 24/7
Emergency telephone numbers	1800 039 008 (24hrs)
Other emergency telephone numbers	Not Available

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

Poisons Schedule	Not Applicable	
Classification ^[1]	Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Skin Sensitizer Category 1, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Acute Aquatic Hazard Category 3, Chronic Aquatic Hazard Category 3	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI	

Label elements

Chemwatch: **69-0450** Page **2** of **16**

Version No: 3.1.1.1

Prismatic UV Screen Hi-Build Gloss series

Issue Date: **29/10/2016**Print Date: **27/01/2017**

SIGNAL WORD

WARNING

Hazard statement(s)

H315	Causes skin irritation.	
H319	Causes serious eye irritation.	
H317	May cause an allergic skin reaction.	
H335	May cause respiratory irritation.	
H412	Harmful to aquatic life with long lasting effects.	

Precautionary statement(s) Prevention

P271	Use in a well-ventilated area.
P280	Wear protective gloves/protective clothing/eye protection/face protection.
P261	Avoid breathing mist/vapours/spray.
P273	Avoid release to the environment.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P362	Take off contaminated clothing and wash before reuse.	
P302+P352	IF ON SKIN: Wash with plenty of soap and water.	
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.	
P312	Call a POISON CENTER or doctor/physician if you feel unwell.	
P333+P313	If skin irritation or rash occurs: Get medical advice/attention.	
P337+P313	If eye irritation persists: Get medical advice/attention.	
P304+P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.	

Precautionary statement(s) Storage

P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
Not Available	30-60	urethane acrylate, proprietary
5888-33-5	1-9	iso-bornyl acrylate
84170-74-1	1-9	neopentyl glycol diacrylate propoxylate (1PO/OH)
42978-66-5	1-9	tripropylene glycol diacrylate
28961-43-5	1-9	trimethylolpropane triacrylate, ethoxylated
	balance	Ingredients determined not to be hazardous

SECTION 4 FIRST AID MEASURES

Chemwatch: 69-0450 Page 3 of 16

Version No: 3.1.1.1

Issue Date: 29/10/2016 Print Date: 27/01/2017 Prismatic UV Screen Hi-Build Gloss series

Description of first aid measures

Eye Contact	If this product comes in contact with the eyes: • Wash out immediately with fresh running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. • Seek medical attention without delay; if pain persists or recurs seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
Ingestion	 Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

- Water spray or fog.
- ► Alcohol stable foam.
- Dry chemical powder.
- · Carbon dioxide.

Special hazards arising from the substrate or mixture

Advice for firefighters	S .
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Fight fire from a safe distance, with adequate cover. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control the fire and cool adjacent area. Avoid spraying water onto liquid pools. Do not approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire.
Fire/Explosion Hazard	 ▶ Combustible. ▶ Slight fire hazard when exposed to heat or flame. ▶ Heating may cause expansion or decomposition leading to violent rupture of containers. ▶ On combustion, may emit toxic fumes of carbon monoxide (CO). ▶ May emit acrid smoke. ▶ Mists containing combustible materials may be explosive. Combustion products include: , , carbon dioxide (CO2) , nitrogen oxides (NOx) , other pyrolysis products typical of burning organic material. May emit clouds of acrid smoke May emit poisonous fumes. May emit corrosive fumes.
HAZCHEM	Not Applicable

Chemwatch: **69-0450** Page **4** of **16**

Prismatic UV Screen Hi-Build Gloss series

Issue Date: **29/10/2016**Print Date: **27/01/2017**

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures

See section 8

Version No: 3.1.1.1

Environmental precautions

See section 12

Methods and material for containment and cleaning up

wethous and material	for containment and cleaning up
Minor Spills	 Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal.
Major Spills	Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

- ▶ Most acrylic monomers have low viscosity therefore pouring, material transfer and processing of these materials do not necessitate heating.
- Viscous monomers may require heating to facilitate handling. To facilitate product transfer from original containers, product must be heated to no more than 60 deg. C. (140 F.), for not more than 24 hours.
- ▶ Do NOT use localised heat sources such as band heaters to heat/ melt product.
- ▶ Do NOT use steam
- ► Hot boxes or hot rooms are recommended for heating/ melting material. The hot box or hot room should be set a maximum temperature of 60 deg. C. (140 F.).
- ▶ Do NOT overheat this may compromise product quality and /or result in an uncontrolled hazardous polymerisation.
- If product freezes, heat as indicated above and mix gently to redistribute the inhibitor. Product should be consumed in its entirety after heating/ melting; avoid multiple "reheats" which may affect product quality or result in product degradation.
- Product should be packaged with inhibitor(s). Unless inhibited, product may polymerise, raising temperature and pressure, possibly rupturing container. Check inhibitor level periodically, adding to bulk material if needed. In addition, the product's inhibitor(s) require the presence of dissolved oxygen. Maintain, at a minimum, the original headspace in the product container and do NOT blanket or mix with oxygen-free gas as it renders the inhibitor ineffective. Ensure air space (oxygen) is present during product heating / melting.

Safe handling

- ► Store product indoors at temperatures greater than the product's freeing point (or greater than 0 deg. C. (32 F).) if no freezing point available and below 38 deg. C (100 F.).
- ▶ Avoid prolonged storage (longer than shelf-life) storage temperatures above 38 deg. C (100 F.).
- Store in tightly closed containers in a properly vented storage area away from heat, sparks, open flame, strong oxidisers, radiation and other initiators.
- ▶ Prevent contamination by foreign materials.
- ▶ Prevent moisture contact.
- ▶ Use only non-sparking tools and limit storage time. Unless specified elsewhere, shelf-life is 6 months from receipt.
- ▶ DO NOT allow clothing wet with material to stay in contact with skin
- · Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- ▶ Prevent concentration in hollows and sumps.
- ▶ DO NOT enter confined spaces until atmosphere has been checked.
- ▶ Avoid smoking, naked lights or ignition sources.

Chemwatch: 69-0450 Page 5 of 16 Issue Date: 29/10/2016 Version No: 3.1.1.1 Print Date: 27/01/2017

Prismatic UV Screen Hi-Build Gloss series

Avoid contact with incompatible materials. ► When handling, **DO NOT** eat, drink or smoke. ▶ Keep containers securely sealed when not in use. Avoid physical damage to containers. ► Always wash hands with soap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. ▶ Polymerisation may occur slowly at room temperature. ▶ Storage requires stabilising inhibitor content and dissolved oxygen content to be monitored. Refer to manufacturer's recommended levels. ▶ DO NOT overfill containers so as to maintain free head space above product. • Blanketing or sparging with nitrogen or oxygen free gas will deactivate stabiliser. ▶ Store below 38 deg. C. Other information ▶ Store in original containers. Keep containers securely sealed. ▶ No smoking, naked lights or ignition sources. ▶ Store in a cool, dry, well-ventilated area. • Store away from incompatible materials and foodstuff containers. Protect containers against physical damage and check regularly for leaks. ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

onaniono ioi saic st	orage, morading any moompatismines
Suitable container	 Metal can or drum Packaging as recommended by manufacturer. Check all containers are clearly labelled and free from leaks.
Storage incompatibility	 Polymerisation may occur slowly at room temperature. Storage requires stabilising inhibitor content and dissolved oxygen content to be monitored. Refer to manufacturer's recommended levels. DO NOT overfill containers so as to maintain free head space above product. Blanketing or sparging with nitrogen or oxygen free gas will deactivate stabiliser. Store below 38 deg. C. for multifunctional acrylates: Avoid exposure to free radical initiators (peroxides, persulfates), iron, rust, oxidisers, and strong acids and strong bases. Avoid heat, flame, sunlight, X-rays or ultra-violet radiation. Storage beyond expiration date, may initiate polymerisation. Polymerisation of large quantities may be violent (even explosive)

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Not Available

EMERGENCY LIMITS

Ingredient	Material name	TEEL-1	TEEL-2	TEEL-3
Prismatic UV Screen Hi-Build Gloss series	Not Available	Not Available	Not Available	Not Available
Ingredient	Original IDLH		Revised IDLH	
urethane acrylate, proprietary	Not Available		Not Available	
iso-bornyl acrylate	Not Available		Not Available	
neopentyl glycol diacrylate propoxylate (1PO/OH)	Not Available		Not Available	
tripropylene glycol diacrylate	Not Available		nilable Not Available	

Not Available

MATERIAL DATA

trimethylolpropane

triacrylate, ethoxylated

CEL TWA: 1 mg/m3 [compare WEEL-TWA* for multifunctional acrylates (MFAs)]

Not Available

Chemwatch: **69-0450** Page **6** of **16**

Version No: 3.1.1.1 Price of IV Serson Hi Pui

Issue Date: **29/10/2016**Print Date: **27/01/2017**

(CEL = Chemwatch Exposure Limit)

Exposure to MFAs has been reported to cause contact dermatitis in humans and serious eye injury in laboratory animals. Exposure to some MFA-resin containing aerosols has also been reported to cause dermatitis. As no assessment of the possible effects of long-term exposure to aerosols was found, a conservative Workplace Environmental Exposure Level (WEEL) was suggested by the American Industrial Hygiene Association (AIHA).

Prismatic UV Screen Hi-Build Gloss series

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Appropriate engineering controls

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)
direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)
grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).	2.5-10 m/s (500-2000 f/min.)

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

- Safety glasses with side shields.
- ► Chemical goggles.

Eye and face protection

Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

Chemwatch: 69-0450 Page 7 of 16 Issue Date: 29/10/2016 Version No: 3.1.1.1

Prismatic UV Screen Hi-Build Gloss series

Print Date: 27/01/2017

NOTE:

- ► The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- ► Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of,
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

General warning: Do NOT use latex gloves! Use only recommended gloves - using the wrong gloves may increase the risk:

Exposure condition Short time use; (few minutes less than 0.5 hour) Little physical stress	Use of thin nitrile rubber gloves: Nitrile rubber (0.1 mm) Excellent tactibility ("feel"), powder-free Disposable Inexpensive Give adequate protection to low molecular weigh acrylic monomers
Exposure condition Medium time use; less than 4 hours Physical stress (opening drums, using tools, etc.)	Use of medium thick nitrile rubber gloves Nitrile rubber, NRL (latex) free; <0.45 mm Moderate tactibility ("feel"), powder-free Disposable Moderate price Gives adequate protection for most acrylates up to 4 hours Do NOT give adequate protection to low molecular weight monomers at exposures longer than 1 hour
Nitrile rubber, NRL (latex) free; >0.56 mm low tactibility ("feel"), powder free High price Gives adequate protection for most acrylates in combination with commused solvents up to 8 hours Do NOT give adequate protection to low molecular weight monomers at exposures longer than 1 hour Avoid use of ketones and acetates in wash-up solutions.	

Where none of this gloves ensure safe handling (for example in long term handling of acrylates containing high levels of acetates and/ or ketones, use laminated multilaver gloves.

Guide to the Classification and Labelling of UV/EB Acrylates Third edition, 231 October 2007 - Cefic

Body protection

Hands/feet protection

See Other protection below

Prismatic UV Screen Hi-Build Gloss series

Print Date: 27/01/2017

Other protection

- ▶ Overalls
- ▶ P.V.C. apron.
- ▶ Barrier cream.
- ▶ Skin cleansing cream.
- ▶ Eye wash unit.

Thermal hazards

Not Available

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computer-generated selection:

Prismatic UV Screen Hi-Build Gloss series

Material	СРІ
PE/EVAL/PE	С

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS P2	-	A-PAPR-AUS / Class 1 P2
up to 50 x ES	-	A-AUS / Class 1 P2	-
up to 100 x ES	-	A-2 P2	A-PAPR-2 P2 ^

^ - Full-face

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. Avoid inhalation.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Milky coloured viscous liquid with a characteristic odour; not miscible with water.		
Physical state	Liquid	Relative density (Water = 1)	1.0
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	200 (Polymerises)	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	>93 (PMCC)	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available

Chemwatch: 69-0450 Page 9 of 16 Issue Date: 29/10/2016 Version No: 3.1.1.1 Print Date: 27/01/2017

Prismatic UV Screen Hi-Build Gloss series

Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	<0.01 @20C	Gas group	Not Available
Solubility in water (g/L)	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	>10	VOC g/L	<10

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Polymerisation may occur at elevated temperatures. Polymerisation may be accompanied by generation of heat as exotherm. Process is self accelerating as heating causes more rapid polymerisation. Exotherm may cause boiling with generation of acrid, toxic and flammable vapour. Polymerisation and exotherm may be violent if contamination with strong acids, amines or catalysts occurs. Polymerisation and exotherm of material in bulk may be uncontrollable and result in rupture of storage tanks. Polymerisation may occur if stabilising inhibitor becomes depleted by aging. Stabilising inhibitor requires dissolved oxygen to be present in liquid for effective action. Specific storage requirements must be met for stability on ageing and transport.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7
Hazardous decomposition products	See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled	Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. No report of respiratory illness in humans as a result of exposure to multifunctional acrylates has been found. Similarly evidence of systemic damage does not appear to exist. Inhalation hazard is increased at higher temperatures.
Ingestion	The material has NOT been classified by EC Directives or other classification systems as "harmful by ingestion". This is because of the lack of corroborating animal or human evidence. The material may still be damaging to the health of the individual, following ingestion, especially where pre-existing organ (e.g liver, kidney) damage is evident. Present definitions of harmful or toxic substances are generally based on doses producing mortality rather than those producing morbidity (disease, ill-health). Gastrointestinal tract discomfort may produce nausea and vomiting. In an occupational setting however, ingestion of insignificant quantities is not thought to be cause for concern.
Skin Contact	Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition All multifunctional acrylates (MFA) produce skin discomfort and are known or suspected skin sensitisers. Aerosols generated in the industrial process are reported to produce dermatitis - vapours generated by the heat of milling may also occur in sufficient concentration to produce dermatitis. Because exposure to industrial aerosols of MFA may also include exposure to various resin systems, photo-initiators, solvents, hydrogen-transfer agents, stabilisers, surfactants, fillers and polymerisation inhibitors, toxic effects may arise due to a range of chemical actions. Open cuts, abraded or irritated skin should not be exposed to this material
Еуе	Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the

Chemwatch: 69-0450 Page 10 of 16

Issue Date: 29/10/2016 Version No: 3.1.1.1 Print Date: 27/01/2017

Prismatic UV Screen Hi-Build Gloss series

conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems. Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals. Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. Respiratory sensitisation may result in allergic/asthma like responses; from coughing and minor breathing difficulties to Chronic bronchitis with wheezing, gasping, Sensitisation may give severe responses to very low levels of exposure, in situations where exposure may occur. Limited evidence shows that inhalation of the material is capable of inducing a sensitisation reaction in a significant number of individuals at a greater frequency than would be expected from the response of a normal population. Pulmonary sensitisation, resulting in hyperactive airway dysfunction and pulmonary allergy may be accompanied by fatigue, malaise and aching. Significant symptoms of exposure may persist for extended periods, even after exposure ceases. Symptoms can be activated by a variety of nonspecific environmental stimuli such as automobile exhaust, perfumes and passive smoking. TOXICITY IRRITATION **Prismatic UV Screen** Hi-Build Gloss series Not Available Not Available TOXICITY IRRITATION Dermal (rabbit) LD50: $>5000 \text{ mg/kg}^{[2]}$ iso-bornyl acrylate Eye (rabbit): slight Oral (rat) LD50: 2300 mg/kg^[2] Skin (rabbit): slight TOXICITY IRRITATION Dermal (rabbit) LD50: >5000 mg/kg^[2] Eye (rabbit): 2.3/110 minimal ** neopentyl glycol diacrylate propoxylate Oral (rat) LD50: >2000 mg/kg^[2] Eye (rabbit): mild * (1PO/OH) Skin (rabbit): mild * Skin (rabbit):0.8-2.4/8.0 min-mild ** TOXICITY IRRITATION tripropylene glycol Dermal (rabbit) LD50: >2000 mg/kg^[2] Eye (rabbit): 100 uL/24h SEVERE diacrylate Oral (rat) LD50: >2000 mg/kg^[1] Skin (rabbit): 500 mg/24h Moderate

trimethylolpropane triacrylate, ethoxylated

IRRITATION Dermal (rabbit) LD50: >13000 mg/kg^[2] Eye (rabbit):100 mg - moderate Oral (rat) LD50: >500 mg/kg^[1] Skin (rabbit):500 mg - moderate

Legend:

1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances

NEOPENTYL GLYCOL DIACRYLATE **PROPOXYLATE** (1PO/OH)

ISO-BORNYL ACRYLATE

Data for similar material

Not active in Ames Test ** * Sanyo Chemical Industries SDS ** Scientific Polymers SDS

TRIPROPYLENE GLYCOL DIACRYLATE

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

TRIMETHYLOLPROPANE TRIACRYLATE. **ETHOXYLATED**

The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

Prismatic UV Screen Hi-Build Gloss series & NEOPENTYL GLYCOL DIACRYLATE PROPOXYLATE (1PO/OH) & TRIPROPYLENE **GLYCOL DIACRYLATE &** TRIMETHYLOLPROPANE

TRIACRYLATE.

The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Page 11 of 16

Issue Date: 29/10/2016 Prismatic UV Screen Hi-Build Gloss series

Print Date: 27/01/2017

ETHOXYLATED

Prismatic UV Screen Hi-Build Gloss series & ISO-BORNYL ACRYLATE & NEOPENTYL GLYCOL DIACRYLATE **PROPOXYLATE** (1PO/OH) & **TRIPROPYLENE GLYCOL DIACRYLATE &** TRIMETHYLOLPROPANE TRIACRYLATE, **ETHOXYLATED**

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Prismatic UV Screen Hi-Build Gloss series & NEOPENTYL GLYCOL DIACRYLATE **PROPOXYLATE** (1PO/OH) Allergic reactions which develop in the respiratory passages as bronchial asthma or rhinoconjunctivitis, are mostly the result of reactions of the allergen with specific antibodies of the IgE class and belong in their reaction rates to the manifestation of the immediate type. In addition to the allergen-specific potential for causing respiratory sensitisation, the amount of the allergen, the exposure period and the genetically determined disposition of the exposed person are likely to be decisive. Factors which increase the sensitivity of the mucosa may play a role in predisposing a person to allergy. They may be genetically determined or acquired, for example, during infections or exposure to irritant substances. Immunologically the low molecular weight substances become complete allergens in the organism either by binding to peptides or proteins (haptens) or after metabolism (prohaptens).

Prismatic UV Screen Hi-Build Gloss series & NEOPENTYL GLYCOL DIACRYLATE **PROPOXYLATE** (1PO/OH)

Particular attention is drawn to so-called atopic diathesis which is characterised by an increased susceptibility to allergic rhinitis, allergic bronchial asthma and atopic eczema (neurodermatitis) which is associated with increased IgE synthesis.

Prismatic UV Screen Hi-Build Gloss series & NEOPENTYL GLYCOL DIACRYLATE **PROPOXYLATE** (1PO/OH)

Exogenous allergic alveolitis is induced essentially by allergen specific immune-complexes of the IgG type; cell-mediated reactions (T lymphocytes) may be involved. Such allergy is of the delayed type with onset up to four hours following exposure.

Prismatic UV Screen Hi-Build Gloss series & NEOPENTYL GLYCOL DIACRYLATE **PROPOXYLATE**

GLYCOL DIACRYLATE &

TRIMETHYLOLPROPANE

(1PO/OH) & **TRIPROPYLENE**

TRIACRYLATE,

ETHOXYLATED

(1PO/OH)

UV (ultraviolet)/ EB (electron beam) acrylates are generally of low toxicity

UV/EB acrylates are divided into two groups; "stenomeric" and "eurymeric" acrylates.

The first group consists of well-defined acrylates which can be described by a simple idealised chemical; they are low molecular weight species with a very narrow weight distribution profile.

The eurymeric acrylates cannot be described by an idealised structure and may differ fundamentally between various suppliers; they are of relatively high molecular weigh and possess a wide weight distribution.

Stenomeric acrylates are usually more hazardous than the eurymeric substances. Stenomeric acrylates are also well defined which allows comparison and exchange of toxicity data - this allows more accurate classification.

The stenomerics cannot be classified as a group; they exhibit substantial variation.

Prismatic UV Screen Hi-Build Gloss series & NEOPENTYL GLYCOL DIACRYLATE **PROPOXYLATE**

No significant acute toxicological data identified in literature search.

Prismatic UV Screen Hi-Build Gloss series & ISO-BORNYL ACRYLATE & NEOPENTYL GLYCOL DIACRYLATE PROPOXYLATE (1PO/OH) & TRIPROPYLENE **GLYCOL DIACRYLATE & TRIMETHYLOLPROPANE** TRIACRYLATE. **ETHOXYLATED**

Based on the available oncogenicity data and without a better understanding of the carcinogenic mechanism the Health and Environmental Review Division (HERD), Office of Toxic Substances (OTS), of the US EPA previously concluded that all chemicals that contain the acrylate or methacrylate moiety (CH2=CHCOO or CH2=C(CH3)COO) should be considered to be a carcinogenic hazard unless shown otherwise by adequate testing.

This position has now been revised and acrylates and methacrylates are no longer de facto carcinogens.

Prismatic UV Screen Hi-Build Gloss series & ISO-BORNYL ACRYLATE & NEOPENTYL GLYCOL DIACRYLATE

PROPOXYLATE

Where no "official" classification for acrylates and methacrylates exists, there has been cautious attempts to create classifications in the absence of contrary evidence. For example

Monalkyl or monoarylesters of acrylic acids should be classified as R36/37/38 and R51/53 Monoalkyl or monoaryl esters of methacrylic acid should be classified as R36/37/38

Chemwatch: 69-0450 Page 12 of 16 Issue Date: 29/10/2016 Version No: 3.1.1.1 Print Date: 27/01/2017

Prismatic UV Screen Hi-Build Gloss series

(1PO/OH) & TRIPROPYLENE **GLYCOL DIACRYLATE &** TRIMETHYLOLPROPANE TRIACRYLATE, **ETHOXYLATED TRIPROPYLENE** The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis **GLYCOL DIACRYLATE &** TRIMETHYLOLPROPANE (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis. TRIACRYLATE. **ETHOXYLATED** 0 Carcinogenicity **Acute Toxicity** 0 Skin 0 Reproductivity Irritation/Corrosion Serious Eye STOT - Single Damage/Irritation Exposure Respiratory or Skin STOT - Repeated 0 sensitisation Exposure

Leaend:

Aspiration Hazard

🗶 – Data available but does not fill the criteria for classification

✓ – Data required to make classification available

SECTION 12 ECOLOGICAL INFORMATION

Mutagenicity

Toxicity

Ingredient	Endpoint	Test Duration (hr)	Species	Value	Source
iso-bornyl acrylate	LC50	96	Fish	0.704mg/L	2
iso-bornyl acrylate	EC50	96	Algae or other aquatic plants	0.172mg/L	3
iso-bornyl acrylate	EC50	504	Crustacea	0.524mg/L	2
iso-bornyl acrylate	NOEC	504	Crustacea	0.092mg/L	2
neopentyl glycol diacrylate propoxylate (1PO/OH)	LC50	96	Fish	2.7mg/L	2
neopentyl glycol diacrylate propoxylate (1PO/OH)	EC50	48	Crustacea	37mg/L	2
neopentyl glycol diacrylate propoxylate (1PO/OH)	NOEC	48	Crustacea	25.3mg/L	2
tripropylene glycol diacrylate	LC50	96	Fish	4.898mg/L	3
tripropylene glycol diacrylate	EC50	48	Crustacea	88.7mg/L	1
tripropylene glycol diacrylate	EC50	96	Algae or other aquatic plants	3.680mg/L	3
tripropylene glycol diacrylate	EC50	72	Algae or other aquatic plants	>28mg/L	1
trimethylolpropane triacrylate, ethoxylated	EC50	72	Algae or other aquatic plants	2.2mg/L	2

Legend:

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

Substances containing unsaturated carbons are ubiquitous in indoor environments. They result from many sources (see below). Most are reactive with environmental ozone and many produce stable products which are thought to adversely affect human health. The potential for surfaces in an enclosed Chemwatch: 69-0450 Page 13 of 16 Issue Date: 29/10/2016 Version No: 3.1.1.1

Prismatic UV Screen Hi-Build Gloss series

Print Date: 27/01/2017

Isoprene, nitric oxide, squalene, unsaturated Occupants (exhaled breath, ski sterols, oleic acid and other unsaturated fatty oils, personal care products) acids, unsaturated oxidation products acid, azelaic acid, nonanoic acid. Soft woods, wood flooring, Isoprene, limonene, alpha-pinene, other terpenes Formaldehyde, 4-AMC, pinoaldehyde, pinic acid, pinonic acid, formic acid, including cypress, cedar and and sesquiterpenes methacrolein, methyl vinyl ketone, SOAs including ultrafine particles silver fir boards, houseplants 4-Phenylcyclohexene, 4-vinylcyclohexene, Carpets and carpet backing styrene, 2-ethylhexyl acrylate, unsaturated fatty acids and esters Linoleum and paints/polishes Linoleic acid, linolenic acid containing linseed oil 3-one, propionic acid, n-butyric acid Residual monomers Latex paint Formaldehyde

Limonene, alpha-pinene, terpinolene, alpha-Certain cleaning products, terpineol, linalool, linalyl acetate and other polishes, waxes, air fresheners terpenoids, longifolene and other sesquiterpenes Natural rubber adhesive Isoprene, terpenes

Styrene

Photocopier toner, printed paper, styrene polymers

Source of unsaturated

substances

Environmental tobacco smoke Styrene, acrolein, nicotine

space to facilitate reactions should be considered.

Soiled clothing, fabrics, bedding

Soiled particle filters Ventilation ducts and duct

liners "Urban grime" Perfumes, colognes, essential oils (e.g. lavender, eucalyptus,

tea tree)

Overall home emissions

Squalene, unsaturated sterols, oleic acid and

other saturated fatty acids litter, and other vegetative debris; soot; diesel

Unsaturated substances (Reactive Emissions)

particles Unsaturated fatty acids and esters, unsaturated oils, neoprene

Polycyclic aromatic hydrocarbons Limonene, alpha-pinene, linalool, linalyl acetate, terpinene-4-ol, gamma-terpinene

Limonene, alpha-pinene, styrene

Major Stable Products produced following reaction with ozone.

Methacrolein, methyl vinyl ketone, nitrogen dioxide, acetone, 6MHQ, geranyl acetone, 4OPA, formaldehyde, nonanol, decanal, 9-oxo-nonanoic

Formaldehyde, acetaldehyde, benzaldehyde, hexanal, nonanal, 2-nonenal

Propanal, hexanal, nonanal, 2-heptenal, 2-nonenal, 2-decenal, 1-pentene-

Formaldehyde, acetaldehyde, glycoaldehyde, formic acid, acetic acid, hydrogen and organic peroxides, acetone, benzaldehyde, 4-hydroxy-4-methyl-5-hexen-1-al, 5-ethenyl-dihydro-5-methyl-2(3H)-furanone,

4-AMC, SOAs including ultrafine particles Formaldehyde, methacrolein, methyl vinyl ketone

Formaldehyde, benzaldehyde

Formaldehyde, benzaldehyde, hexanal, glyoxal, N-methylformamide, nicotinaldehyde, cotinine

Acetone, geranyl acetone, 6MHO, 40PA, formaldehyde, nonanal, decanal, 9-oxo-nonanoic acid, azelaic acid, nonanoic acid

Unsaturated fatty acids from plant waxes, leaf Formaldehyde, nonanal, and other aldehydes; azelaic acid; nonanoic acid; 9-oxo-nonanoic acid and other oxo-acids; compounds with mixed functional groups (=O, -OH, and -COOH)

C5 to C10 aldehydes

Oxidized polycyclic aromatic hydrocarbons

Formaldehyde, 4-AMC, acetone, 4-hydroxy-4-methyl-5-hexen-1-al, 5-ethenyl-dihydro-5-methyl-2(3H) furanone, SOAs including ultrafine particles

Formaldehyde, 4-AMC, pinonaldehyde, acetone, pinic acid, pinonic acid, formic acid, benzaldehyde, SOAs including ultrafine particles

Abbreviations: 4-AMC, 4-acetyl-1-methylcyclohexene; 6MHQ, 6-methyl-5-heptene-2-one, 4OPA, 4-oxopentanal, SOA, Secondary Organic Aerosols Reference: Charles J Weschler; Environmental Helath Perspectives, Vol 114, October 2006

Ecotoxicity of acrylates is a function of n-octanol/ water partition coefficient (log Pow, log Kow). Compounds with a log Pow >5 exhibit simple narcosis, but at lower log Pow the toxicity of acrylates is greater than predicted for simple narcotics.

If released to surface water, acrylic acid and the acrylic esters would all be rapidly biodegraded while a portion would volatilise to the air. Acrylic acid was shown to rapidly biodegrade aerobically in soil (t1/2 < 1 day). Volatilised acrylic acid and acrylic esters are predicted to degrade rapidly by atmospheric photo-oxidation with estimated half-lives of 2 to 24 h.

The mobility in soil of acrylic acid and its esters ranged from 'medium' to 'very high'. Calculated bioconcentration factors ranged from 1 to 37, suggesting a low bioconcentration potential. Acrylic acid and methyl acrylate showed limited biodegradability in the five day biochemical oxygen demand (BOD5) test, while ethyl acrylate and butyl acrylate were degraded easily (77% and 56%, respectively). Using the OECD method 301D 28-d closed bottle test, degradability for acrylic acid was 81% at 28 days, while the acrylic esters ranged from 57% to 60%. Acrylic acid degraded rapidly to carbon dioxide in soil (t1/2 < 1 day).

According to classification procedures developed by the US EPA, the acute toxicity of acrylic acid to fish and invertebrates ranged from 'slightly' toxic to 'practically non-toxic'. The acute toxicity of the acrylic esters was 'moderately' toxic. Effects on algae of these compounds could not be judged from static tests due to the extensive biodegradation and volatilisation that occurred during the tests. Toxicity tests were conducted using freshwater and marine fish, invertebrates, and algae. Acrylic acid effect concentrations for fish and invertebrates ranged from 27 to 236 mg/l. Effect concentrations (LC50 or EC50) for fish and invertebrates using methyl acrylate, ethyl acrylate, and butyl acrylate ranged from 1.1 to 8.2 mg/l. The chronic maximum acceptable toxicant concentration (MATC) for acrylic acid with Daphnia magna was 27 mg/l based on length and young produced per adult reproduction day and for ethyl acrylate was 0.29 mg/l based on both the reproductive and growth endpoints. MATC values represent an approximate threshold of chronic effects to an organism.

Overall these studies show that acrylic acid and the acrylic esters studied can rapidly biodegrade, have a low potential for persistence or bioaccumulation in the environment, and have low to moderate toxicity.

C. A. Staples et al; Chemosphere Vol 40, January 2000, pp 29-38

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
iso-bornyl acrylate	HIGH	HIGH
tripropylene glycol diacrylate	LOW	LOW

Bioaccumulative potential

Chemwatch: 69-0450 Page 14 of 16 Issue Date: 29/10/2016 Version No: 3.1.1.1 Print Date: 27/01/2017

Prismatic UV Screen Hi-Build Gloss series

Ingredient	Bioaccumulation	
iso-bornyl acrylate	MEDIUM (LogKOW = 4.2116)	
tripropylene glycol diacrylate	LOW (LogKOW = 2.0387)	

Mobility in soil

Ingredient	Mobility
iso-bornyl acrylate	LOW (KOC = 980.2)
tripropylene glycol diacrylate	LOW (KOC = 10)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- ► Containers may still present a chemical hazard/ danger when empty.
- Return to supplier for reuse/ recycling if possible.

Otherwise:

- ▶ If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- ▶ Reduction
- ► Reuse
- ▶ Recycling
- ► Disposal (if all else fails)

Product / Packaging disposal

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- ▶ DO NOT allow wash water from cleaning or process equipment to enter drains.
- ▶ It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible or consult manufacturer for recycling options.
- ► Consult State Land Waste Authority for disposal.
- ▶ Bury or incinerate residue at an approved site.
- Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

ISO-BORNYL ACRYLATE(5888-33-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

Version No: 3.1.1.1

Prismatic UV Screen Hi-Build Gloss series

Issue Date: 29/10/2016 Print Date: 27/01/2017

NEOPENTYL GLYCOL DIACRYLATE PROPOXYLATE (1PO/OH)(84170-74-1) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

TRIPROPYLENE GLYCOL DIACRYLATE(42978-66-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

TRIMETHYLOLPROPANE TRIACRYLATE, ETHOXYLATED(28961-43-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

National Inventory	Status
Australia - AICS	Y
Canada - DSL	Υ
Canada - NDSL	N (iso-bornyl acrylate; tripropylene glycol diacrylate; trimethylolpropane triacrylate, ethoxylated; neopentyl glycol diacrylate propoxylate (1PO/OH))
China - IECSC	Υ
Europe - EINEC / ELINCS / NLP	N (neopentyl glycol diacrylate propoxylate (1PO/OH))
Japan - ENCS	N (neopentyl glycol diacrylate propoxylate (1PO/OH))
Korea - KECI	Υ
New Zealand - NZIoC	Υ
Philippines - PICCS	Υ
USA - TSCA	Υ
Legend:	Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

Name	CAS No
iso-bornyl acrylate	5888-33-5, 111821-21-7, 214686-31-4
neopentyl glycol diacrylate propoxylate (1PO/OH)	84170-74-1, 82643-33-2, 111216-02-5, 113676-63-4, 122989-11-1, 138988-84-8, 159602-17-2, 165039-33-8
tripropylene glycol diacrylate	42978-66-5, 68901-05-3, 106912-45-2, 108137-10-6, 123233-05-6, 126968-23-8, 131455-28-2, 153316-73-5, 160995-24-4, 203514-07-2, 83045-02-7, 89190-98-7
trimethylolpropane triacrylate, ethoxylated	28961-43-5, 75577-70-7, 114087-97-7, 115743-03-8, 116397-59-2, 116629-36-8, 121366-82-3, 129131-07-3, 1332927-34-0, 136108-21-9, 1369581-24-7, 138626-59-2, 142736-00-3, 162628-75-3, 165039-34-9, 178303-05-4, 181699-79-6, 186844-90-6, 187405-03-4, 188735-80-0, 190383-82-5, 192189-32-5, 199685-37-5, 201352-12-7, 215735-95-8, 299931-34-3, 68444-29-1, 79850-18-3, 79899-84-6, 82643-34-3, 827021-92-1, 847253-21-8, 911052-04-5

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

Page **16** of **16** Issue Date: 29/10/2016 Chemwatch: 69-0450 Version No: 3.1.1.1 Print Date: 27/01/2017

Prismatic UV Screen Hi-Build Gloss series

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.