

Prismatci UV Screen Flash Gloss

Prismatic Inks

Chemwatch Hazard Alert Code: 2

Issue Date: **02/11/2016**Print Date: **27/01/2017**L.GHS.AUS.EN

Chemwatch: **70-0605** Version No: **2.1.1.1**

Safety Data Sheet according to WHS and ADG requirements

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

Product name	Prismatci UV Screen Flash Gloss	
Synonyms	Not Available	
Other means of identification	Not Available	

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses

Use according to manufacturer's directions.

UV/ EB-curing is a drying technology for coatings, inks and adhesives. It uses light of a certain wavelength or high speed electrons to give almost instantaneous dry films. It allows formulators to develop products for a wide variety of applications and substrates without using volatile organic compounds as solvents. It represents therefore a major technological advance compared to other technologies, which may require abatement installations to take care of these compounds, as many of these compounds are able to cause either environmental or health risks if present in a too large concentration.

Details of the supplier of the safety data sheet

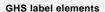
Registered company name	Prismatic Inks
Address	33 Britton Street Smithfield New South Wales 2164 Australia
Telephone	+61 2 9729 1 856
Fax	+61 2 9729 3005
Website	Not Available
Email	Not Available

Emergency telephone number

Association / Organisation	Chemwatch Emergency Line 24/7	
Emergency telephone numbers	1800 039 008 (24hrs)	
Other emergency telephone numbers	Not Available	

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture


Poisons Schedule	Not Applicable	
Classification ^[1]	Acute Toxicity (Oral) Category 4, Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Skin Sensitizer Category 1, Carcinogenicity Category 2, Specific target organ toxicity - single exposure Category 3 (respiratory tract irritation), Acute Aquatic Hazard Category 3	
Legend:	1. Classified by Chemwatch; 2. Classification drawn from HSIS; 3. Classification drawn from EC Directive 1272/2008 - Annex VI	

Label elements

Version No: 2.1.1.1

Prismatci UV Screen Flash Gloss

Issue Date: **02/11/2016** Print Date: **27/01/2017**

SIGNAL WORD

WARNING

Hazard statement(s)

H302	Harmful if swallowed.
H315	Causes skin irritation.
H319	Causes serious eye irritation.
H317	May cause an allergic skin reaction.
H351	Suspected of causing cancer.
H335	May cause respiratory irritation.
H412	Harmful to aquatic life with long lasting effects.

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.
P271	Use in a well-ventilated area.
P280	Wear protective gloves/protective clothing/eye protection/face protection.
P281	Use personal protective equipment as required.
P261	Avoid breathing mist/vapours/spray.
P270	Do not eat, drink or smoke when using this product.
P273	Avoid release to the environment.
P272	Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s) Response

P308+P313	IF exposed or concerned: Get medical advice/attention.	
P362	Take off contaminated clothing and wash before reuse.	
P302+P352	IF ON SKIN: Wash with plenty of soap and water.	
P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continuing.	
P333+P313	f skin irritation or rash occurs: Get medical advice/attention.	
P337+P313	If eye irritation persists: Get medical advice/attention.	
P301+P312	IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell.	
P304+P340	IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.	
P330	Rinse mouth.	

Precautionary statement(s) Storage

	• • •
P405	Store locked up.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

CAS No	%[weight]	Name
42978-66-5	10-29	tripropylene glycol diacrylate
53814-24-7	10-29	bisphenol A/ epichlorohydrin/ acrylic acid oligomer

Chemwatch: 70-0605 Page 3 of 17 Issue Date: 02/11/2016 Version No: 2.1.1.1 Print Date: 27/01/2017

Prismatci UV Screen Flash Gloss

48145-04-6	1-9	ethylene glycol phenyl ether acrylate
28961-43-5	1-9	trimethylolpropane triacrylate, ethoxylated
	balance	Ingredients determined not to be hazardous

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact	 If this product comes in contact with the eyes: Wash out immediately with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Seek medical attention without delay; if pain persists or recurs seek medical attention. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.
Skin Contact	If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation.
Inhalation	 If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor, without delay.
Ingestion	 For advice, contact a Poisons Information Centre or a doctor at once. Urgent hospital treatment is likely to be needed. If swallowed do NOT induce vomiting. If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Observe the patient carefully. Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious. Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink. Transport to hospital or doctor without delay.

Indication of any immediate medical attention and special treatment needed

As in all cases of suspected poisoning, follow the ABCDEs of emergency medicine (airway, breathing, circulation, disability, exposure), then the ABCDEs of toxicology (antidotes, basics, change absorption, change distribution, change elimination).

For poisons (where specific treatment regime is absent):

BASIC TREATMENT

• Establish a patent airway with suction where necessary.

- Watch for signs of respiratory insufficiency and assist ventilation as necessary.
- ▶ Administer oxygen by non-rebreather mask at 10 to 15 L/min.
- Monitor and treat, where necessary, for pulmonary oedema.
- Monitor and treat, where necessary, for shock.
- · Anticipate seizures.
- PDO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool.

ADVANCED TREATMENT

- · Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred.
- ▶ Positive-pressure ventilation using a bag-valve mask might be of use.
- ▶ Monitor and treat, where necessary, for arrhythmias.
- ▶ Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications.
- Drug therapy should be considered for pulmonary oedema.
- · Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications.
- ▶ Treat seizures with diazepam.
- ▶ Proparacaine hydrochloride should be used to assist eye irrigation.

BRONSTEIN, A.C. and CURRANCE, P.L.

EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994

Treat symptomatically.

SECTION 5 FIREFIGHTING MEASURES

Extinguishing media

Chemwatch: **70-0605** Page 4 of 17

Version No: 2.1.1.1 Prismatci UV Screen Flash Gloss Issue Date: 02/11/2016 Print Date: 27/01/2017

- ▶ Water spray or fog.
- ▶ Alcohol stable foam.
- ▶ Dry chemical powder.
- ▶ Carbon dioxide.

Special hazards arising from the substrate or mixture

Fire Incompatibility

▶ Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may

Advice for firefighters		
Fire Fighting	 Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Fight fire from a safe distance, with adequate cover. If safe, switch off electrical equipment until vapour fire hazard removed. Use water delivered as a fine spray to control the fire and cool adjacent area. Avoid spraying water onto liquid pools. Do not approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. 	
Fire/Explosion Hazard	 ▶ Combustible. ▶ Slight fire hazard when exposed to heat or flame. ▶ Heating may cause expansion or decomposition leading to violent rupture of containers. ▶ On combustion, may emit toxic fumes of carbon monoxide (CO). ▶ May emit acrid smoke. ▶ Mists containing combustible materials may be explosive. Combustion products include: , , carbon dioxide (CO2) , other pyrolysis products typical of burning organic material. May emit clouds of acrid smoke May emit poisonous fumes. May emit corrosive fumes. 	

SECTION 6 ACCIDENTAL RELEASE MEASURES

HAZCHEM

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Not Applicable

Methods and material for containment and cleaning up		
Minor Spills	 Remove all ignition sources. Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Control personal contact with the substance, by using protective equipment. Contain and absorb spill with sand, earth, inert material or vermiculite. Wipe up. Place in a suitable, labelled container for waste disposal. 	
Major Spills	 ▶ DO NOT touch the spill material Moderate hazard. ▶ Clear area of personnel and move upwind. ▶ Alert Fire Brigade and tell them location and nature of hazard. ▶ Wear breathing apparatus plus protective gloves. ▶ Prevent, by any means available, spillage from entering drains or water course. ▶ No smoking, naked lights or ignition sources. ▶ Increase ventilation. ▶ Stop leak if safe to do so. ▶ Contain spill with sand, earth or vermiculite. ▶ Collect recoverable product into labelled containers for recycling. ▶ Absorb remaining product with sand, earth or vermiculite. ▶ Collect solid residues and seal in labelled drums for disposal. ▶ Wash area and prevent runoff into drains. 	

Page **5** of **17**

Prismatci UV Screen Flash Gloss

Issue Date: 02/11/2016 Print Date: 27/01/2017

• If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

- Most acrylic monomers have low viscosity therefore pouring, material transfer and processing of these materials do not necessitate heating.
- Viscous monomers may require heating to facilitate handling. To facilitate product transfer from original containers, product must be heated to no more than 60 deg. C. (140 F.), for not more than 24 hours.
- Do NOT use localised heat sources such as band heaters to heat/ melt product.
- ▶ Do NOT use steam
- ► Hot boxes or hot rooms are recommended for heating/ melting material. The hot box or hot room should be set a maximum temperature of 60 deg. C. (140 F.).
- ▶ Do NOT overheat this may compromise product quality and /or result in an uncontrolled hazardous polymerisation.
- If product freezes, heat as indicated above and mix gently to redistribute the inhibitor. Product should be consumed in its entirety after heating/ melting; avoid multiple "reheats" which may affect product quality or result in product degradation.
- Product should be packaged with inhibitor(s). Unless inhibited, product may polymerise, raising temperature and pressure, possibly rupturing container. Check inhibitor level periodically, adding to bulk material if needed. In addition, the product's inhibitor(s) require the presence of dissolved oxygen. Maintain, at a minimum, the original headspace in the product container and do NOT blanket or mix with oxygen-free gas as it renders the inhibitor ineffective. Ensure air space (oxygen) is present during product heating / melting.
- ► Store product indoors at temperatures greater than the product's freeing point (or greater than 0 deg. C. (32 F).) if no freezing point available and below 38 deg. C (100 F.).
- ▶ Avoid prolonged storage (longer than shelf-life) storage temperatures above 38 deg. C (100 F.).

Safe handling * Store in tightly closed containers in a properly vented storage area away from heat, sparks, open flame, strong oxidisers, radiation and other initiators.

- ▶ Prevent contamination by foreign materials.
- Prevent moisture contact.
- ▶ Use only non-sparking tools and limit storage time. Unless specified elsewhere, shelf-life is 6 months from receipt.
- ▶ DO NOT allow clothing wet with material to stay in contact with skin
- Avoid all personal contact, including inhalation.
- ► Wear protective clothing when risk of exposure occurs.
- ▶ Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- ► DO NOT enter confined spaces until atmosphere has been checked.
- ▶ Avoid smoking, naked lights or ignition sources.
- ▶ Avoid contact with incompatible materials.
- ► When handling, **DO NOT** eat, drink or smoke.
- ► Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately.
- Use good occupational work practice.
- ▶ Observe manufacturer's storage and handling recommendations contained within this SDS.
- ▶ Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions.

Polymerisation may occur slowly at room temperature.

- Storage requires stabilising inhibitor content and dissolved oxygen content to be monitored. Refer to manufacturer's recommended levels.
- DO NOT overfill containers so as to maintain free head space above product.
- ▶ Blanketing or sparging with nitrogen or oxygen free gas will deactivate stabiliser.
- ▶ Store below 38 deg. C.
- Store in original containers.
- ▶ Keep containers securely sealed.
- ► Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
 Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

Other information

- ► Metal can or drum
- ▶ Packaging as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

Storage incompatibility

- Polymerisation may occur slowly at room temperature.
- ► Storage requires stabilising inhibitor content and dissolved oxygen content to be monitored. Refer to manufacturer's recommended levels.
- ▶ DO NOT overfill containers so as to maintain free head space above product.

Prismatci UV Screen Flash Gloss

Issue Date: **02/11/2016**Print Date: **27/01/2017**

- ▶ Blanketing or sparging with nitrogen or oxygen free gas will deactivate stabiliser.
- ▶ Store below 38 deg. C.

for multifunctional acrylates:

- ▶ Avoid exposure to free radical initiators (peroxides, persulfates), iron, rust, oxidisers, and strong acids and strong bases.
- ▶ Avoid heat, flame, sunlight, X-rays or ultra-violet radiation.
- Storage beyond expiration date, may initiate polymerisation. Polymerisation of large quantities may be violent (even explosive)

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Material name

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Not Available

Ingredient

EMERGENCY LIMITS

mgrediem	Material Haine	TEEE-T	ILLL-Z	TLLL-3
Prismatci UV Screen Flash Gloss	Not Available	Not Available	Not Available	Not Available
Ingredient	Original IDLH		Revised IDLH	
tripropylene glycol diacrylate	Not Available		Not Available	
bisphenol A/ epichlorohydrin/ acrylic acid oligomer	Not Available		Not Available	
ethylene glycol phenyl ether acrylate	Not Available		Not Available	
trimethylolpropane triacrylate, ethoxylated	Not Available		Not Available	

MATERIAL DATA

CEL TWA: 1 mg/m3 [compare WEEL-TWA* for multifunctional acrylates (MFAs)]

(CEL = Chemwatch Exposure Limit)

Exposure to MFAs has been reported to cause contact dermatitis in humans and serious eye injury in laboratory animals. Exposure to some MFA-resin containing aerosols has also been reported to cause dermatitis. As no assessment of the possible effects of long-term exposure to aerosols was found, a conservative Workplace Environmental Exposure Level (WEEL) was suggested by the American Industrial Hygiene Association (AIHA).

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection.

The basic types of engineering controls are:

Process controls which involve changing the way a job activity or process is done to reduce the risk.

Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.

Employers may need to use multiple types of controls to prevent employee overexposure.

Appropriate engineering controls

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.

An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:	Air Speed:
solvent, vapours, degreasing etc., evaporating from tank (in still air).	0.25-0.5 m/s (50-100 f/min.)
aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)	0.5-1 m/s (100-200 f/min.)

Chemwatch: 70-0605 Page 7 of 17

Version No: 2.1.1.1

Prismatci UV Screen Flash Gloss

Issue Date: 02/11/2016 Print Date: 27/01/2017

direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)	
gg, (2.5-10 m/s	
into zone of very high rapid air motion).	(500-2000 f/min.)	

Within each range the appropriate value depends on:

Lower end of the range	Upper end of the range
1: Room air currents minimal or favourable to capture	1: Disturbing room air currents
2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity
3: Intermittent, low production.	3: High production, heavy use
4: Large hood or large air mass in motion	4: Small hood-local control only

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

▶ Safety glasses with side shields.

Chemical goggles.

► Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent1

Skin protection

Eye and face protection

See Hand protection below

NOTE:

- ▶ The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact.
- ► Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed.

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application.

The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturizer is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:

- frequency and duration of contact,
- chemical resistance of glove material,
- glove thickness and
- dexterity

Hands/feet protection

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).

- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended.

It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For

Version No: 2.1.1.1

Issue Date: 02/11/2016 Print Date: 27/01/2017

example:

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

General warning: Do NOT use latex gloves! Use only recommended gloves - using the wrong gloves may increase the risk:

Prismatci UV Screen Flash Gloss

•	
Exposure condition Short time use; (few minutes less than 0.5 hour) Little physical stress	Use of thin nitrile rubber gloves: Nitrile rubber (0.1 mm) Excellent tactibility ("feel"), powder-free Disposable Inexpensive Give adequate protection to low molecular weigh acrylic monomers
Exposure condition Medium time use; less than 4 hours Physical stress (opening drums, using tools, etc.)	Use of medium thick nitrile rubber gloves Nitrile rubber, NRL (latex) free; <0.45 mm Moderate tactibility ("feel"), powder-free Disposable Moderate price Gives adequate protection for most acrylates up to 4 hours Do NOT give adequate protection to low molecular weight monomers at exposures longer than 1 hour
Exposure condition Long time Cleaning operations	Nitrile rubber, NRL (latex) free; >0.56 mm low tactibility ("feel"), powder free High price Gives adequate protection for most acrylates in combination with commonly used solvents up to 8 hours Do NOT give adequate protection to low molecular weight monomers at exposures longer than 1 hour Avoid use of ketones and acetates in wash-up solutions.

Where none of this gloves ensure safe handling (for example in long term handling of acrylates containing high levels of acetates and/ or ketones, use laminated multilayer gloves.

Guide to the Classification and Labelling of UV/EB Acrylates Third edition, 231 October 2007 - Cefic

- ▶ When handling liquid-grade epoxy resins wear chemically protective gloves (e.g nitrile or nitrile-butatoluene rubber), boots and aprons.
- DO NOT use cotton or leather (which absorb and concentrate the resin), polyvinyl chloride, rubber or polyethylene gloves (which absorb the resin).
- ▶ DO NOT use barrier creams containing emulsified fats and oils as these may absorb the resin; silicone-based barrier creams should be reviewed prior to use.

Body protection	See Other protection below
Other protection	 Overalls. P.V.C. apron. Barrier cream. Skin cleansing cream. Eye wash unit.
Thermal hazards	Not Available

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the:

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computer-generated selection:

Prismatci UV Screen Flash Gloss

Material	СРІ
PE/EVAL/PE	С

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent

Respiratory protection

Type A-P Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.

Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

Required Minimum Protection Factor	Half-Face Respirator	Full-Face Respirator	Powered Air Respirator
up to 10 x ES	A-AUS P2	-	A-PAPR-AUS / Class 1 P2
up to 50 x ES	-	A-AUS / Class 1 P2	-
up to 100 x ES	-	A-2 P2	A-PAPR-2 P2 ^

Chemwatch: 70-0605 Page 9 of 17

Version No: 2.1.1.1

Issue Date: 02/11/2016 Print Date: 27/01/2017

basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

^ - Full-face

Prismatci UV Screen Flash Gloss

A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. Avoid inhalation.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

Appearance	Viscous milky coloured liquid with a characteristic odour; not miscible with water.		
Physical state	Liquid	Relative density (Water = 1)	1.0
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	Not Available
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	Not Available
Initial boiling point and boiling range (°C)	polymerises at 200C	Molecular weight (g/mol)	Not Applicable
Flash point (°C)	> 93C (PMCC)	Taste	Not Available
Evaporation rate	Not Available	Explosive properties	Not Available
Flammability	Not Applicable	Oxidising properties	Not Available
Upper Explosive Limit (%)	Not Available	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	Not Available	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	<0.01 @20C	Gas group	Not Available
Solubility in water (g/L)	Immiscible	pH as a solution (1%)	Not Available
Vapour density (Air = 1)	>10	VOC g/L	Not Available

SECTION 10 STABILITY AND REACTIVITY

Reactivity	See section 7
Chemical stability	 Polymerisation may occur at elevated temperatures. Polymerisation may be accompanied by generation of heat as exotherm. Process is self accelerating as heating causes more rapid polymerisation. Exotherm may cause boiling with generation of acrid, toxic and flammable vapour. Polymerisation and exotherm may be violent if contamination with strong acids, amines or catalysts occurs. Polymerisation and exotherm of material in bulk may be uncontrollable and result in rupture of storage tanks. Polymerisation may occur if stabilising inhibitor becomes depleted by aging. Stabilising inhibitor requires dissolved oxygen to be present in liquid for effective action. Specific storage requirements must be met for stability on ageing and transport.
Possibility of hazardous reactions	See section 7
Conditions to avoid	See section 7
Incompatible materials	See section 7

Prismatci UV Screen Flash Gloss

Page 10 of 17 Issue Date: 02/11/2016
Print Date: 27/01/2017

Hazardous decomposition products

See section 5

SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

Inhaled

Evidence shows, or practical experience predicts, that the material produces irritation of the respiratory system, in a substantial number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system. No report of respiratory illness in humans as a result of exposure to multifunctional acrylates has been found. Similarly evidence of systemic damage does not appear to exist.

Inhalation hazard is increased at higher temperatures.

Acute effects from inhalation of high vapour concentrations may be chest and nasal irritation with coughing, sneezing, headache and even nausea.

Ingestion

Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual.

Skin Contact

The material produces moderate skin irritation; evidence exists, or practical experience predicts, that the material either

- produces moderate inflammation of the skin in a substantial number of individuals following direct contact, and/or
- produces significant, but moderate, inflammation when applied to the healthy intact skin of animals (for up to four hours), such inflammation being present twenty-four hours or more after the end of the exposure period.

Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis.

All multifunctional acrylates (MFA) produce skin discomfort and are known or suspected skin sensitisers. Aerosols generated in the industrial process are reported to produce dermatitis - vapours generated by the heat of milling may also occur in sufficient concentration to produce dermatitis. Because exposure to industrial aerosols of MFA may also include exposure to various resin systems, photo-initiators, solvents, hydrogen-transfer agents, stabilisers, surfactants, fillers and polymerisation inhibitors, toxic effects may arise due to a range of chemical actions.

Open cuts, abraded or irritated skin should not be exposed to this material

_

Evidence exists, or practical experience predicts, that the material may cause severe eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Eye contact may cause significant inflammation with pain. Corneal injury may occur; permanent impairment of vision may result unless treatment is prompt and adequate. Repeated or prolonged exposure to irritants may cause inflammation characterised by a temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.

Long-term exposure to respiratory irritants may result in disease of the airways involving difficult breathing and related systemic problems.

Practical experience shows that skin contact with the material is capable either of inducing a sensitisation reaction in a substantial number of individuals, and/or of producing a positive response in experimental animals.

On the basis, primarily, of animal experiments, concern has been expressed that the material may produce carcinogenic or mutagenic effects; in respect of the available information, however, there presently exists inadequate data for making a satisfactory assessment.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems.

Exposure to the material may cause concerns for human fertility, on the basis that similar materials provide some evidence of impaired fertility in the absence of toxic effects, or evidence of impaired fertility occurring at around the same dose levels as other toxic effects, but which are not a secondary non-specific consequence of other toxic effects.

Chronic

Sensitisation may give severe responses to very low levels of exposure, in situations where exposure may occur. Bisphenol A exhibits hormone-like properties that raise concern about its suitability in consumer products and food containers. Bisphenol A is thought to be an endocrine disruptor which can mimic oestrogen and may lead to negative health effects. More specifically, bisphenol A closely mimics the structure and function of the hormone oestradiol with the ability to bind to and activate the same oestrogen receptor as the natural hormone. Early developmental stages appear to be the period of greatest sensitivity to its effects and some studies have linked prenatal exposure to later physical and neurological difficulties. Regulatory bodies have determined safety levels for humans, but those safety levels are being questioned or are under review.

A 2009 study on Chinese workers in bisphenol A factories found that workers were four times more likely to report erectile dysfunction, reduced sexual desire and overall dissatisfaction with their sex life than workers with no heightened bisphenol A exposure. Bisphenol A workers were also seven times more likely to have ejaculation difficulties. They were also more likely to report reduced sexual function within one year of beginning employment at the factory, and the higher the exposure, the more likely they were to have sexual difficulties.

Bisphenol A in weak concentrations is sufficient to produce a negative reaction on the human testicle. The researchers found that a concentration equal to 2 ug/ litre of bisphenol A in the culture medium, a concentration equal to the average concentration generally found in the blood, urine and amniotic fluid of the population, was sufficient to produce the effects.

Chemwatch: 70-0605 Page 11 of 17 Issue Date: 02/11/2016 Version No: 2.1.1.1

Prismatci UV Screen Flash Gloss

Print Date: 27/01/2017

The researchers believe that exposure of pregnant women to bisphenol A may be one of the causes of congenital masculinisation defects of the hypospadia and cryptorchidism types the frequency of which has doubled overall since the 70's. They also suggested that "it is also possible that bisphenol A contributes to a reduction in the production of sperm and the increase in the incidence of testicular cancer in adults that have been observed in recent decades"

One review has concluded that obesity may be increased as a function of bisphenol A exposure, which "...merits concern among scientists and public health officials"

One study demonstrated that adverse neurological effects occur in non-human primates regularly exposed to bisphenol A at levels equal to the United States Environmental Protection Agency's (EPA) maximum safe dose of 50 ug/kg/day This research found a connection between bisphenol A and interference with brain cell connections vital to memory, learning, and mood.

A further review concluded that bisphenol-A has been shown to bind to thyroid hormone receptor and perhaps have selective effects on its functions. Carcinogenicity studies have shown increases in leukaemia and testicular interstitial cell tumours in male rats. However, "these studies have not been considered as convincing evidence of a potential cancer risk because of the doubtful statistical significance of the small differences in incidences from controls". Another in vitro study has concluded that bisphenol A is able to induce neoplastic transformation in human breast epithelial cells. I whilst a further study concluded that maternal oral exposure to low concentrations of bisphenol A, during lactation, increases mammary carcinogenesis in a rodent model. In vitro studies have suggested that bisphenol A can promote the growth of neuroblastoma cells and potently promotes invasion and metastasis of neuroblastoma cells. Newborn rats exposed to a low-dose of bisphenol A (10 ug/kg) showed increased prostate cancer susceptibility when adults. At least one study has suggested that bisphenol A suppresses DNA methylation which is involved in epigenetic changes.

Bisphenol A is the isopropyl adduct of 4.4'-dihydroxydiphenyl oxide (DHDPO). A series of DHDPO analogues have been investigated as potential oestrogen receptor/anti-tumour drug carriers in the development of a class of therapeutic drugs called "cytostatic hormones". Oestrogenic activity is induced with 1 to 100 mg/kg body weight in animal models. Bisphenol A sealants are frequently used in dentistry for treatment of dental pits and fissures. Samples of saliva collected from dental patients during a 1-hour period following application contain the monomer. A bisphenol-A sealant has been shown to be oestrogenic in vitro; such sealants may represent an additional source of xenoestrogens in humans and may be the cause of additional concerns in children.

Concerns have been raised about the possible developmental effects on the foetus/embryo or neonate resulting from the leaching of bisphenol A from epoxy linings in metal cans which come in contact with food-stuffs.

Many drugs, including naproxen, salicylic acid, carbamazepine and mefenamic acid can, in vitro, significantly inhibit bisphenol A glucuronidation (detoxification).

Prismatci UV Screen	TOXICITY	IRRITATION	
Flash Gloss	Not Available	Not Available	
	TOXICITY	IRRITATION	
tripropylene glycol diacrylate	Dermal (rabbit) LD50: >2000 mg/kg ^[2]	Eye (rabbit): 100 uL/24h SEVERE	
ulaci yiate	Oral (rat) LD50: >2000 mg/kg ^[1]	Skin (rabbit): 500 mg/24h Moderate	
bisphenol A/	TOXICITY	IRRITATION	
epichlorohydrin/ acrylic acid oligomer	Not Available	Not Available	
ethylene glycol phenyl ether acrylate	тохісіту	IRRITATION	
	Dermal (rabbit) LD50: 1800 mg/kg ^[2]	Skin (rabbit):500 mg (open) mild	
	Oral (rat) LD50: 5144.64 mg/kg ^[2]		
	TOXICITY	IRRITATION	
trimethylolpropane triacrylate, ethoxylated	Dermal (rabbit) LD50: >13000 mg/kg ^[2]	Eye (rabbit):100 mg - moderate	
	Oral (rat) LD50: >500 mg/kg ^[1]	Skin (rabbit):500 mg - moderate	
Legend:	1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS.		
	Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances		

TRIPROPYLENE GLYCOL DIACRYLATE	The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.
ETHYLENE GLYCOL PHENYL ETHER ACRYLATE	The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.
TRIMETHYLOLPROPANE TRIACRYLATE, ETHOXYLATED	The material may produce moderate eye irritation leading to inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

Page 12 of 17 Prismatci UV Screen Flash Gloss

Issue Date: **02/11/2016**Print Date: **27/01/2017**

Prismatci UV Screen
Flash Gloss &
TRIPROPYLENE
GLYCOL DIACRYLATE &
ETHYLENE GLYCOL
PHENYL ETHER
ACRYLATE &
TRIMETHYLOLPROPANE
TRIACRYLATE,
ETHOXYLATED

The following information refers to contact allergens as a group and may not be specific to this product. Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke's oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The significance of the contact allergen is not simply determined by its sensitisation potential: the distribution of the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Prismatci UV Screen
Flash Gloss &
TRIPROPYLENE
GLYCOL DIACRYLATE &
ETHYLENE GLYCOL
PHENYL ETHER
ACRYLATE &
TRIMETHYLOLPROPANE
TRIACRYLATE,
ETHOXYLATE,

Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production.

Prismatci UV Screen
Flash Gloss &
TRIPROPYLENE
GLYCOL DIACRYLATE &
ETHYLENE GLYCOL
PHENYL ETHER
ACRYLATE &
TRIMETHYLOLPROPANE
TRIACRYLATE,
ETHOXYLATED

UV (ultraviolet)/ EB (electron beam) acrylates are generally of low toxicity

UV/EB acrylates are divided into two groups; "stenomeric" and "eurymeric" acrylates.

The first group consists of well-defined acrylates which can be described by a simple idealised chemical; they are low molecular weight species with a very narrow weight distribution profile.

The eurymeric acrylates cannot be described by an idealised structure and may differ fundamentally between various suppliers; they are of relatively high molecular weigh and possess a wide weight distribution.

Stenomeric acrylates are usually more hazardous than the eurymeric substances. Stenomeric acrylates are also well defined which allows comparison and exchange of toxicity data - this allows more accurate classification.

The stenomerics cannot be classified as a group; they exhibit substantial variation.

Prismatci UV Screen Flash Gloss & BISPHENOL A/ EPICHLOROHYDRIN/ ACRYLIC ACID

OLIGOMER

No significant acute toxicological data identified in literature search.

Prismatci UV Screen Flash Gloss & BISPHENOL A/ EPICHLOROHYDRIN/ ACRYLIC ACID OLIGOMER The chemical structure of hydroxylated diphenylalkanes or bisphenols consists of two phenolic rings joined together through a bridging carbon. This class of endocrine disruptors that mimic oestrogens is widely used in industry, particularly in plastics Bisphenol A (BPA) and some related compounds exhibit oestrogenic activity in human breast cancer cell line MCF-7, but there were remarkable differences in activity. Several derivatives of BPA exhibited significant thyroid hormonal activity towards rat pituitary cell line GH3, which releases growth hormone in a thyroid hormone-dependent manner. However, BPA and several other derivatives did not show such activity. Results suggest that the 4-hydroxyl group of the A-phenyl ring and the B-phenyl ring of BPA derivatives are required for these hormonal activities, and substituents at the 3,5-positions of the phenyl rings and the bridging alkyl moiety markedly influence the activities.

Bisphenols promoted cell proliferation and increased the synthesis and secretion of cell type-specific proteins. When ranked by proliferative potency, the longer the alkyl substituent at the bridging carbon, the lower the concentration needed for maximal cell yield; the most active compound contained two propyl chains at the bridging carbon. Bisphenols with two hydroxyl groups in the para position and an angular configuration are suitable for appropriate hydrogen bonding to the acceptor site of the oestrogen receptor.

Prismatci UV Screen
Flash Gloss &
TRIPROPYLENE
GLYCOL DIACRYLATE &
ETHYLENE GLYCOL
PHENYL ETHER
ACRYLATE &
TRIMETHYLOLPROPANE
TRIACRYLATE,
ETHOXYLATED

Based on the available oncogenicity data and without a better understanding of the carcinogenic mechanism the Health and Environmental Review Division (HERD), Office of Toxic Substances (OTS), of the US EPA previously concluded that all chemicals that contain the acrylate or methacrylate moiety (CH2=CHCOO or CH2=C(CH3)COO) should be considered to be a carcinogenic hazard unless shown otherwise by adequate testing.

This position has now been revised and acrylates and methacrylates are no longer de facto carcinogens.

Prismatci UV Screen
Flash Gloss &
TRIPROPYLENE
GLYCOL DIACRYLATE &
TRIMETHYLOLPROPANE
TRIACRYLATE,
ETHOXYLATED

The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

Chemwatch: 70-0605 Page 13 of 17 Issue Date: 02/11/2016 Version No: 2.1.1.1 Print Date: 27/01/2017

Prismatci UV Screen Flash Gloss

Prismatci UV Screen Flash Gloss & **TRIPROPYLENE GLYCOL DIACRYLATE &** ETHYLENE GLYCOL PHENYL ETHER **ACRYLATE &** TRIMETHYLOLPROPANE TRIACRYLATE, **ETHOXYLATED**

Where no "official" classification for acrylates and methacrylates exists, there has been cautious attempts to create classifications in the absence of contrary evidence. For example

Monalkyl or monoarylesters of acrylic acids should be classified as R36/37/38 and R51/53

Monoalkyl or monoaryl esters of methacrylic acid should be classified as R36/37/38

Acute Toxicity	~	Carcinogenicity	~
Skin Irritation/Corrosion	~	Reproductivity	0
Serious Eye Damage/Irritation	✓	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	✓	STOT - Repeated Exposure	0
Mutagenicity	0	Aspiration Hazard	0

Legend:

- 🗶 Data available but does not fill the criteria for classification
- Data required to make classification available
- Not Available to make classification

SECTION 12 ECOLOGICAL INFORMATION

Toxicity

•					
Ingredient	Endpoint	Test Duration (hr)	Species	Value	Source
tripropylene glycol diacrylate	LC50	96	Fish	4.898mg/L	3
tripropylene glycol diacrylate	EC50	48	Crustacea	88.7mg/L	1
tripropylene glycol diacrylate	EC50	96	Algae or other aquatic plants	3.680mg/L	3
tripropylene glycol diacrylate	EC50	72	Algae or other aquatic plants	>28mg/L	1
ethylene glycol phenyl ether acrylate	LC50	96	Fish	2.341mg/L	3
ethylene glycol phenyl ether acrylate	EC50	96	Algae or other aquatic plants	1.114mg/L	3
trimethylolpropane triacrylate, ethoxylated	EC50	72	Algae or other aquatic plants	2.2mg/L	2
Legend:	Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data				

Data

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

Do NOT allow product to come in contact with surface waters or to intertidal areas below the mean high water mark. Do not contaminate water when cleaning equipment or disposing of equipment wash-waters.

Wastes resulting from use of the product must be disposed of on site or at approved waste sites.

For bisphenol A and related bisphenols:

Environmental fate:

Biodegradability (28 d) 89% - Easily biodegradable

Bioconcentration factor (BCF) 7.8 mg/l

Bisphenol A, its derivatives and analogues, can be released from polymers, resins and certain substances by metabolic products

Substance does not meet the criteria for PBT or vPvB according to Regulation (EC) No 1907/2006, Annex XIII

As an environmental contaminant, bisphenol A interferes with nitrogen fixation at the roots of leguminous plants associated with the bacterial symbiont Sinorhizobium meliloti. Despite a half-life in the soil of only 1-10 days, its ubiquity makes it an important pollutant. According to Environment Canada, "initial assessment shows that at low levels, bisphenol A can harm fish and organisms over time. Studies also indicate that it can currently be found in municipal wastewater." However, a study conducted in the United States found that 91-98% of bisphenol A may be removed from water during treatment at municipal water treatment plants.

Ecotoxicity:

Fish LC50 (96 h): 4.6 mg/l (freshwater fish); 11 mg/l (saltwater fish): NOEC 0.016 mg/l (freshwater fish- 144 d); 0.064 mg/l (saltwater fish 164 d)

Fresh water invertebrates EC50 (48 h): 10.2 mg/l: NOEC 0.025 mg/l - 328 d)

Marine water invertebrate EC50 (96 h): 1.1 mg/l; NOEC 0.17 mg/l (28 d)

Version No: 2.1.1.1

Issue Date: 02/11/2016 Print Date: 27/01/2017

Freshwater algae (96 h): 2.73 mg/l Marine water algae (96 h): 1.1 mg/l

Fresh water plant EC50 (7 d): 20 mg/l: NOEC 7.8 mg/l

In general, studies have shown that bisphenol A can affect growth, reproduction and development in aquatic organisms.

Among freshwater organisms, fish appear to be the most sensitive species. Evidence of endocrine-related effects in fish, aquatic invertebrates, amphibians and reptiles has been reported at environmentally relevant exposure levels lower than those required for acute toxicity. There is a widespread variation in reported values for endocrine-related effects, but many fall in the range of 1 ug/L to 1 mg/L

Prismatci UV Screen Flash Gloss

A 2009 review of the biological impacts of plasticisers on wildlife published by the Royal Society with a focus on annelids (both aquatic and terrestrial), molluscs, crustaceans, insects, fish and amphibians concluded that bisphenol A has been shown to affect reproduction in all studied animal groups, to impair development in crustaceans and amphibians and to induce genetic aberrations.

A large 2010 study of two rivers in Canada found that areas contaminated with hormone-like chemicals including bisphenol A showed females made up 85 per cent of the population of a certain fish, while females made up only 55 per cent in uncontaminated areas.

Although abundant data are available on the toxicity of bisphenol-A (2,2-bis (4-hydroxydiphenyl)propane;(BPA) A variety of BPs were examined for their acute toxicity against Daphnia magna, mutagenicity, and oestrogenic activity using the Daphtoxkit (Creasel Ltd.), the umu test system, and the yeast two-hybrid system, respectively, in comparison with BPA. BPA was moderately toxic to D. magna (48-h EC50 was 10 mg/l) according to the current U.S. EPA acute toxicity evaluation standard, and it was weakly oestrogenic with 5 orders of magnitude lower activity than that of the natural estrogen 17 beta-oestradiol in the yeast screen, while no mutagenicity was observed. All seven BPs tested here showed moderate to slight acute toxicity, no mutagenicity, and weak oestrogenic activity as well as BPA. Some of the BPs showed considerably higher oestrogenic activity than BPA, and others exhibited much lower activity. Bisphenol S (bis(4-hydroxydiphenyl)sulfone) and bis(4-hydroxyphenyl)sulfide) showed oestrogenic activity. Biodegradation is a major mechanism for eliminating various environmental pollutants. Studies on the biodegradation of bisphenols have mainly focused on bisphenol A. A number of BPA-degrading bacteria have been isolated from enrichments of sludge from wastewater treatment plants. The first step in the biodegradation of BPA is the hydroxylation of the carbon atom of a methyl group or the quaternary carbon in the BPA molecule. Judging from these features of the biodegradation mechanisms, it is possible that the same mechanism used for BPA is used to biodegrade all bisphenols that have at least one methyl or methylene group bonded at the carbon atom between the two phenol groups. However, bisphenol F ([bis(4-hydroxyphenyl)methane; BPF), which has no substituent at the bridging carbon, is unlikely to be metabolised by such a mechanism. Nevertheless BPF is readily degraded by river water microorganisms under aerobic conditions. From this evidence, it was clear that a specific mechanism for biodegradation of BPF does exist in the natural ecosystem.

Algae can enhance the photodegradation of bisphenols. The photodegradation rate of BPF increased with increasing algae concentration. Humic acid and Fe3+ ions also enhanced the photodegradation of BPF. The effect of pH value on the BPF photodegradation was also important.

Substances containing unsaturated carbons are ubiquitous in indoor environments. They result from many sources (see below). Most are reactive with environmental ozone and many produce stable products which are thought to adversely affect human health. The potential for surfaces in an enclosed

space to facilitate reactions should be considered. Source of unsaturated

oils, personal care products)

substances

Soft woods, wood flooring, including cypress, cedar and

silver fir boards, houseplants

Carpets and carpet backing

Linoleum and paints/polishes containing linseed oil Latex paint

Certain cleaning products,

Natural rubber adhesive Isoprene, terpenes

Photocopier toner, printed paper, styrene polymers

Environmental tobacco smoke Styrene, acrolein, nicotine

Soiled clothing, fabrics,

bedding Soiled particle filters

Ventilation ducts and duct

"Urban grime"

Perfumes, colognes, essential oils (e.g. lavender, eucalyptus, tea tree)

Overall home emissions

Occupants (exhaled breath, ski soprene, nitric oxide, squalene, unsaturated sterols, oleic acid and other unsaturated fatty

acids, unsaturated oxidation products

and sesquiterpenes 4-Phenylcyclohexene, 4-vinylcyclohexene,

styrene, 2-ethylhexyl acrylate, unsaturated fatty acids and esters

Linoleic acid, linolenic acid

Residual monomers

Limonene, alpha-pinene, terpinolene, alphapolishes, waxes, air fresheners terpenoids, longifolene and other sesquiterpenes

Styrene

Squalene, unsaturated sterols, oleic acid and

other saturated fatty acids

litter, and other vegetative debris; soot; diesel particles

Unsaturated fatty acids and esters, unsaturated oils, neoprene Polycyclic aromatic hydrocarbons

Limonene, alpha-pinene, linalool, linalyl acetate, terpinene-4-ol, gamma-terpinene

Limonene, alpha-pinene, styrene

Unsaturated substances (Reactive Emissions) Major Stable Products produced following reaction with ozone.

Methacrolein, methyl vinyl ketone, nitrogen dioxide, acetone, 6MHQ, geranyl acetone, 4OPA, formaldehyde, nonanol, decanal, 9-oxo-nonanoic acid, azelaic acid, nonanoic acid.

Isoprene, limonene, alpha-pinene, other terpenes Formaldehyde, 4-AMC, pinoaldehyde, pinic acid, pinonic acid, formic acid, methacrolein, methyl vinyl ketone, SOAs including ultrafine particles

Formaldehyde, acetaldehyde, benzaldehyde, hexanal, nonanal, 2-nonenal

Propanal, hexanal, nonanal, 2-heptenal, 2-nonenal, 2-decenal, 1-pentene-3-one, propionic acid, n-butyric acid

Formaldehyde

Formaldehyde, acetaldehyde, glycoaldehyde, formic acid, acetic acid, hydrogen and organic peroxides, acetone, benzaldehyde, 4-hydroxy-4-methyl-5-hexen-1-al, 5-ethenyl-dihydro-5-methyl-2(3H)-furanone,

4-AMC, SOAs including ultrafine particles Formaldehyde, methacrolein, methyl vinyl ketone

Formaldehyde, benzaldehyde

Formaldehyde, benzaldehyde, hexanal, glyoxal, N-methylformamide, nicotinaldehyde, cotinine

Acetone, geranyl acetone, 6MHO, 40PA, formaldehyde, nonanal, decanal, 9-oxo-nonanoic acid, azelaic acid, nonanoic acid Unsaturated fatty acids from plant waxes, leaf Formaldehyde, nonanal, and other aldehydes; azelaic acid; nonanoic

> acid; 9-oxo-nonanoic acid and other oxo-acids; compounds with mixed functional groups (=O, -OH, and -COOH)

C5 to C10 aldehydes

Oxidized polycyclic aromatic hydrocarbons

Formaldehyde, 4-AMC, acetone, 4-hydroxy-4-methyl-5-hexen-1-al, 5-ethenyl-dihydro-5-methyl-2(3H) furanone, SOAs including ultrafine particles

Formaldehyde, 4-AMC, pinonaldehyde, acetone, pinic acid, pinonic acid, formic acid, benzaldehyde, SOAs including ultrafine particles

Abbreviations: 4-AMC, 4-acetyl-1-methylcyclohexene; 6MHQ, 6-methyl-5-heptene-2-one, 4OPA, 4-oxopentanal, SOA, Secondary Organic Aerosols Reference: Charles J Weschler; Environmental Helath Perspectives, Vol 114, October 2006

Ecotoxicity of acrylates is a function of n-octanol/ water partition coefficient (log Pow, log Kow). Compounds with a log Pow >5 exhibit simple narcosis, but at lower log Pow the toxicity of acrylates is greater than predicted for simple narcotics.

Chemwatch: **70-0605** Page **15** of **17**

Version No: 2.1.1.1 Prismatci UV Screen Flash Gloss

Issue Date: **02/11/2016**Print Date: **27/01/2017**

If released to surface water, acrylic acid and the acrylic esters would all be rapidly biodegraded while a portion would volatilise to the air. Acrylic acid was shown to rapidly biodegrade aerobically in soil (t1/2 < 1 day). Volatilised acrylic acid and acrylic esters are predicted to degrade rapidly by atmospheric photo-oxidation with estimated half-lives of 2 to 24 h.

The mobility in soil of acrylic acid and its esters ranged from 'medium' to 'very high'. Calculated bioconcentration factors ranged from 1 to 37, suggesting a low bioconcentration potential. Acrylic acid and methyl acrylate showed limited biodegradability in the five day biochemical oxygen demand (BOD5) test, while ethyl acrylate and butyl acrylate were degraded easily (77% and 56%, respectively). Using the OECD method 301D 28-d closed bottle test, degradability for acrylic acid was 81% at 28 days, while the acrylic esters ranged from 57% to 60%. Acrylic acid degraded rapidly to carbon dioxide in soil (f1/2<1 day).

According to classification procedures developed by the US EPA, the acute toxicity of acrylic acid to fish and invertebrates ranged from 'slightly' toxic to 'practically non-toxic'. The acute toxicity of the acrylic esters was 'moderately' toxic. Effects on algae of these compounds could not be judged from static tests due to the extensive biodegradation and volatilisation that occurred during the tests. Toxicity tests were conducted using freshwater and marine fish, invertebrates, and algae. Acrylic acid effect concentrations for fish and invertebrates ranged from 27 to 236 mg/l. Effect concentrations (LC50 or EC50) for fish and invertebrates using methyl acrylate, ethyl acrylate, and butyl acrylate ranged from 1.1 to 8.2 mg/l. The chronic maximum acceptable toxicant concentration (MATC) for acrylic acid with *Daphnia magna* was 27 mg/l based on length and young produced per adult reproduction day and for ethyl acrylate was 0.29 mg/l based on both the reproductive and growth endpoints. MATC values represent an approximate threshold of chronic effects to an organism.

Overall these studies show that acrylic acid and the acrylic esters studied can rapidly biodegrade, have a low potential for persistence or bioaccumulation in the environment, and have low to moderate toxicity.

C. A. Staples et al; Chemosphere Vol 40, January 2000, pp 29-38

DO NOT discharge into sewer or waterways.

Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
tripropylene glycol diacrylate	LOW	LOW
ethylene glycol phenyl ether acrylate	LOW	LOW

Bioaccumulative potential

Ingredient	Bioaccumulation
tripropylene glycol diacrylate	LOW (LogKOW = 2.0387)
ethylene glycol phenyl ether acrylate	LOW (LogKOW = 2.4603)

Mobility in soil

Ingredient	Mobility
tripropylene glycol diacrylate	LOW (KOC = 10)
ethylene glycol phenyl ether acrylate	LOW (KOC = 199.9)

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- ▶ Containers may still present a chemical hazard/ danger when empty.
- ► Return to supplier for reuse/ recycling if possible.

Otherwise:

- If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill.
- ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

Product / Packaging disposal

- ► Reduction ► Reuse
- ► Recycling
- ► Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

▶ DO NOT allow wash water from cleaning or process equipment to enter drains.

Chemwatch: 70-0605 Page 16 of 17 Issue Date: 02/11/2016 Version No: 2.1.1.1 Print Date: 27/01/2017

Prismatci UV Screen Flash Gloss

- ▶ It may be necessary to collect all wash water for treatment before disposal.
- ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- ▶ Where in doubt contact the responsible authority.
- ▶ Recycle wherever possible or consult manufacturer for recycling options.
- ► Consult State Land Waste Authority for disposal.
- Bury or incinerate residue at an approved site.
- Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 TRANSPORT INFORMATION

Labels Required

Marine Pollutant	NO
HAZCHEM	Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code

Not Applicable

SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

TRIPROPYLENE GLYCOL DIACRYLATE(42978-66-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

BISPHENOL A/ EPICHLOROHYDRIN/ ACRYLIC ACID OLIGOMER(53814-24-7) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

ETHYLENE GLYCOL PHENYL ETHER ACRYLATE(48145-04-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

TRIMETHYLOLPROPANE TRIACRYLATE, ETHOXYLATED(28961-43-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS

Australia Inventory of Chemical Substances (AICS)

National Inventory	Status
Australia - AICS	Y
Canada - DSL	N (bisphenol A/ epichlorohydrin/ acrylic acid oligomer)
Canada - NDSL	N (tripropylene glycol diacrylate; trimethylolpropane triacrylate, ethoxylated; bisphenol A/ epichlorohydrin/ acrylic acid oligomer; ethylene glycol phenyl ether acrylate)
China - IECSC	N (bisphenol A/ epichlorohydrin/ acrylic acid oligomer)
Europe - EINEC / ELINCS / NLP	Y
Japan - ENCS	Υ
Korea - KECI	N (bisphenol A/ epichlorohydrin/ acrylic acid oligomer)
New Zealand - NZIoC	Υ
Philippines - PICCS	N (bisphenol A/ epichlorohydrin/ acrylic acid oligomer)
USA - TSCA	N (bisphenol A/ epichlorohydrin/ acrylic acid oligomer)
Legend:	Y = All ingredients are on the inventory N = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

|--|

Chemwatch: 70-0605 Page 17 of 17 Issue Date: 02/11/2016 Version No: 2.1.1.1 Print Date: 27/01/2017

Prismatci UV Screen Flash Gloss

tripropylene glycol diacrylate	42978-66-5, 68901-05-3, 106912-45-2, 108137-10-6, 123233-05-6, 126968-23-8, 131455-28-2, 153316-73-5, 160995-24-4, 203514-07-2, 83045-02-7, 89190-98-7
ethylene glycol phenyl ether acrylate	48145-04-6, 1174171-02-8, 329327-80-2, 93615-54-4
trimethylolpropane triacrylate, ethoxylated	28961-43-5, 75577-70-7, 114087-97-7, 115743-03-8, 116397-59-2, 116629-36-8, 121366-82-3, 129131-07-3, 1332927-34-0, 136108-21-9, 1369581-24-7, 138626-59-2, 142736-00-3, 162628-75-3, 165039-34-9, 178303-05-4, 181699-79-6, 186844-90-6, 187405-03-4, 188735-80-0, 190383-82-5, 192189-32-5, 199685-37-5, 201352-12-7, 215735-95-8, 299931-34-3, 68444-29-1, 79850-18-3, 79899-84-6, 82643-34-3, 827021-92-1, 847253-21-8, 911052-04-5

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

A list of reference resources used to assist the committee may be found at:

www.chemwatch.net

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit

IARC: International Agency for Research on Cancer

ACGIH: American Conference of Governmental Industrial Hygienists

STEL: Short Term Exposure Limit

TEEL: Temporary Emergency Exposure Limit。

IDLH: Immediately Dangerous to Life or Health Concentrations

OSF: Odour Safety Factor

NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level

TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index

This document is copyright.

Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.